
MODIFIED EQUINOCTIAL ORBITAL ELEMENTS 
 
The modified equinoctial orbital elements are a set of orbital elements that are useful for 
trajectory analysis and optimization.  They are valid for circular, elliptic, and hyperbolic 
orbits. These direct modified equinoctial equations exhibit no singularity for zero 
eccentricity and orbital inclinations equal to 0 and 90 degrees. However, two of the 
components are singular for an orbital inclination of 180 degrees. 
 
Relationship between modified equinoctial and classical orbital elements 
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Relationship between classical and modified equinoctial orbital elements 
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orbital eccentricity 
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orbital inclination 
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argument of periapsis 
 

 ( ) ( ) ( )1 1 1tan tan tan ,g f k h gh f k f h gkω − − −= − = − +  (2d) 
 
right ascension of the ascending node 
 

 ( )1tan ,k h−Ω =  (2e) 
 
true anomaly 

 
 ( ) ( )1tanL Lθ ω −= − Ω + = − g f  (2f) 
 

argument of latitude 
 
 ( )1tan sin cos , cos sinu h L k L h Lω θ −= + = − + k L  (2g) 
 
In these equations an expression of the form ( )1tan ,a b−  indicates a four quadrant inverse 
tangent calculation. 
 
Relationship between ECI state vector and modified equinoctial elements 
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velocity vector 
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where 
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Modified equinoctial form of the orbital equations of motion 
 
The system of first-order modified equinoctial equations of orbital motion are given by 
the following expressions 
 

 

( ) ( )

( ) ( )

2

2

2

2

sin 1 cos sin cos

cos 1 sin sin cos

cos
2

sin
2

1 sin cos

t

t n
r

t n
r

n

n

dp p pp
dt w

gdf pf L w L f h L k
dt w w

gdg pg L w L g h L k
dt w w

sdh ph L
dt w

sdk pk L
dt w

dL w pL p h L k
dt p w

µ

µ

µ

µ

µ

µ
µ

= = ∆

∆ ∆ = = ∆ + + + − −    
L

L∆ ∆ = = −∆ + + + + −    

∆
= =

∆
= =

 
= = + − 

 
( ) nL ∆

 (4) 

 
where  are non-two-body perturbations in the radial, tangential and normal 
directions, respectively.  The radial direction is along the geocentric radius vector of the 
spacecraft measured positive in a direction away from the geocenter, the tangential 
direction is perpendicular to this radius vector measured positive in the direction of 
orbital motion, and the normal direction is positive along the angular momentum vector 
of the spacecraft’s orbit. 

, ,r t∆ ∆ ∆n
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In vector form the equations of motion can be expressed as follows: 
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The total non-two-body acceleration vector is given by 
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where  are unit vectors in the radial, tangential and normal directions 
computed from the ECI position r and velocity vectors v according to 
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For unperturbed two-body motion, 0=P  and the first five equations of motion are 
simply .  Therefore, for two-body motion these modified 
equinoctial orbital elements are constant. 

0p f g h k= = = = =

 
Non-spherical Earth Gravity 
 
The non-spherical gravitational acceleration vector can be expressed as 
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In these equations the north direction component is indicated by subscript N and the 
radial direction component is subscript r. 
 
The contributions due to the zonal gravity effects of  are as follows: 2 3, ,J J J4
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For a zonal only Earth gravity model, the east component is identically zero. 
 
Therefore, the zonal gravity perturbation contribution is 
 
  (10) T

g =a Q g
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where Q i . ˆ ˆ ˆ      r t n =  i i

 
For  effects only, the components are as follows: 2J
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Aerodynamic Drag 
 
The radial, tangential and normal perturbations due to aerodynamic drag are given by the 
following three expressions: 
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2rD DSC vvρ∆ = − r  (12a) 
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Secondary Body Perturbations 
 
The general vector equation for secondary body perturbations such as the Moon or 
planets is given by 
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In this equation,  is the vector from the primary body to the secondary body j, js jµ  is the 
gravitational constant of the secondary body and j j= − sd r , where r is the position 
vector of the spacecraft relative to the primary body. 
 
To avoid numerical problems, use is made of Battin’s ( )F q  function given by 
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Finally, the perturbation due to secondary bodies in the modified equinoctial coordinate 
system is given by 
  (16) T

TB =a Q
 

where Q i . ˆ ˆ ˆ      r t n =  i i

 
Propulsive Thrust 
 
The acceleration due to propulsive thrust can be expressed as 
 

 ˆT
T
m

=a u  (17) 

 
where T is the thrust, m is the spacecraft mass and [ ]ˆ      r t nu u u=u  is the unit pointing 
thrust vector expressed in the spacecraft-centered radial-tangential-normal coordinate 
system.  The components of the unit thrust vector can also be defined in terms of the in-
plane pitch angle θ  and the out-of-plane yaw angle ψ  as follows: 
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Finally, the pitch and yaw angles can be determined from the components of the unit 
thrust vector according to 
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The pitch angle is positive above the “local horizontal” and the yaw angle is positive in 
the direction of the angular momentum vector. 
 
The relationship between a unit thrust vector in the ECI coordinate system ˆ

ECITu  and the 
corresponding unit thrust vector in the modified equinoctial system ˆ

MEETu  is given by 
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This relationship can also be expressed as 
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Finally, the transformation of the unit thrust vector in the ECI system to the modified 
equinoctial coordinate system is given by 
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For the case of tangential steering 
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